
3 Common Patterns in XML Processing

Roger L. Costello
February 2011

XML Documents Contain Lists

Most XML documents contain lists of elements. For example, this document contains a list of
<book> elements:

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book>
 <title>The Origin of Wealth</title>
 <author>Eric D. Beinhocker</author>
 <date>2006</date>
 <ISBN>1-57851-777-X</ISBN>
 <publisher>Harvard Business School Press</publisher>
 <cost currency="USD">29.95</cost>
 </book>
 <book>
 <title>DOM Scripting</title>
 <author>Jeremy Keith</author>
 <date>2005</date>
 <ISBN>1-59059-533-5</ISBN>
 <publisher>friends of ed</publisher>
 <cost currency="USD">34.99</cost>
 </book>
 …
</books>

Consequently, processing XML documents typically involves processing lists.

3 Common Ways of Processing Lists

There are 3 things that are commonly done to lists:

1. Map: a new list is created with the same length as the original, and each item in the new
list is the result of doing one piece of work on the corresponding item in the original list.

2. Filter: select pieces of a list—walk through a list, selecting those that satisfy a criterion.
3. Fold: reduce a list to a single value—do something to every element of a list, updating an

accumulator along the way, and returning the accumulator when done.

They are common list processing patterns. It is beneficial to abstract out those common patterns
so that they can be reused and thereby avoid repetitive, mundane, error-prone boilerplate code.

This article describes the 3 patterns and then provides a link to XSLT 1.0 code that implements
the patterns.

Map

A common list processing pattern is to create a new list that is the same length as the original,
where each item in the new list is the result of doing one piece of work on the corresponding
item in the original list.

For example, map the above list of <book> elements to this list of HTML table rows:

Notice that this HTML list has the same length as the <book> list and each HTML row is the
result of performing one operation on the corresponding <book> element. The terminology is
that the <book> list has been mapped to an HTML list.

Another example: consider this list of <aircraft> elements:

<?xml version="1.0" encoding="UTF-8"?>
<aircraft-list>
 <aircraft>
 <altitude units="feet">100</altitude>
 </aircraft>
 <aircraft>
 <altitude units="feet">200</altitude>
 </aircraft>
 <aircraft>
 <altitude units="feet">300</altitude>
 </aircraft>
 <aircraft>
 <altitude units="feet">400</altitude>

 </aircraft>
 <aircraft>
 <altitude units="feet">500</altitude>
 </aircraft>
</aircraft-list>

Map that list to a new list that is identical, except the <altitude> values are expressed in
meters:

<?xml version="1.0" encoding="UTF-8"?>
<aircraft-list>
 <aircraft>
 <altitude units="meters">30.48</altitude>
 </aircraft>
 <aircraft>
 <altitude units="meters">60.96</altitude>
 </aircraft>
 <aircraft>
 <altitude units="meters">91.44</altitude>
 </aircraft>
 <aircraft>
 <altitude units="meters">121.92</altitude>
 </aircraft>
 <aircraft>
 <altitude units="meters">152.4</altitude>
 </aircraft>
</aircraft-list>

The two examples illustrate a common list processing pattern. The pattern is so common it has a
name: map.

The map function takes two arguments, function and list:

map (function, list)

The map function applies function to each item in list and returns a new list that has the same
length as the original list.

The advantage of using the map function is that it implements the machinery for applying
function to each item in list. That machinery is boilerplate code. Let's write it once and
never again. That way you can focus on the real problem -- what processing do you want to
apply to each item in the list.

Filter

A second common list processing pattern is to select pieces of a list—walk through a list,
selecting those that satisfy a criterion.

For example, filter the above list of <book> elements, selecting only those authored by Jeremy
Keith:

<?xml version="1.0" encoding="UTF-8"?>
<Jeremy-Keith-Books>
 <book>
 <title>DOM Scripting</title>
 <author>Jeremy Keith</author>
 <date>2005</date>
 <ISBN>1-59059-533-5</ISBN>
 <publisher>friends of ed</publisher>
 <cost currency="USD">34.99</cost>
 </book>
 <book>
 <title>Bulletproof Ajax</title>
 <author>Jeremy Keith</author>
 <date>2007</date>
 <ISBN>0-321-47266-7</ISBN>
 <publisher>New Riders</publisher>
 <cost currency="USD">34.99</cost>
 <cost currency="CAD">43.99</cost>
 <cost currency="GPB">24.99</cost>
 </book>
</Jeremy-Keith-Books>

The example illustrates a common list processing pattern. The pattern is so common it has a
name: filter.

The filter function takes two arguments, function and list:

filter (function, list)

function is Boolean – it returns either true or false. The filter function walks through
list, applying function to each item, and creating a new list composed of a copy of the items
for which function returns true.

The advantage of using the filter function is that it implements the machinery for walking
through list, applying function to each item, and copying the items for which function

returns true. That machinery is boilerplate. Let's write it once and never again. That way you
can focus on the real problem -- what are the items you want from list.

Fold

A third common list processing pattern is to reduce a list to a single value—do something to
every element of a list, updating an accumulator along the way, and returning the accumulator
when done.

A list may be "folded up" from the left or right. A left fold is called foldl and a right fold is
called foldr.

Let's start with a foldl example. Fold up all the <item> elements in this purchase order and
generate a total cost:

<?xml version="1.0" encoding="UTF-8"?>
<purchase-order>
 <item>
 <cost>10</cost>
 </item>
 <item>
 <cost>20</cost>
 </item>
 <item>
 <cost>19</cost>
 </item>
 <item>
 <cost>25</cost>
 </item>
 <item>
 <cost>17</cost>
 </item>
</purchase-order>

The list of <item> elements is processed from top to bottom (left to right if they were displayed
on one line). The accumulator is initialized to zero (0), and the <cost> values are folded into
the accumulator one by one to generate:

<Total-Cost>91</Total-Cost>

To distinguish between foldl and foldr, let's trace the example's execution. I will use pseudo
code. Let (+) denote the addition operation and let [10, 20, 19, 25, 17] denote the
<item> list. The accumulator is initialized to zero (0):

foldl (+) 0 [10, 20, 19, 25, 17]

== fold1 (+) (0 + 10) [20, 19, 25, 17]
== foldl (+) (10 + 20) [19, 25, 17]
== foldl (+) (30 + 19) [25, 17]
== foldl (+) (49 + 25) [17]
== foldl (+) (74 + 17) []
== 91

The accumulator is added to the first item in the list and the result is recursively folded into the
remaining list.

If the purchase order is processed using foldr, the same result is generated. However, a trace of
its execution shows that the list is folded up from the right:

foldr (+) 0 [10, 20, 19, 25, 17]

== 10 + foldr (+) 0 [20, 19,25, 17]
== 10 + 20 + foldr (+) 0 [19, 25, 17]
== 10 + 20 + 19 + foldr (+) 0 [25, 17]
== 10 + 20 + 19 + 25 + foldr (+) 0 [17]
== 10 + 20 + 19 + 25 + 17 + foldr (+) 0 []
== 10 + 20 + 19 + 25 + 17 + 0
== 10 + 20 + 19 + 25 + 17
== 10 + 20 + 19 + 42
== 10 + 20 + 61
== 10 + 81
== 91

The addition operation is applied to the first element of the list and the result of folding the
remaining list.

The foldr function is preferred over the foldl function. The reason for this is explained next.

Both fold functions step through the list and accumulate a value. The example above showed a
single number as the accumulated value. However, what you accumulate could be anything – it
could be a new list!

For example, we can use folds to do an identity transform – the accumulated value is an identical
list. Let's trace an application of foldl with a function that simply copies the accumulator
and the list item. I will use (I) to denote this identity function:

foldl (I) '' [10, 20, 19, 25, 17]

== fold1 (I) [10] [20, 19, 25, 17]
== foldl (I) [10, 20] [19, 25, 17]
== foldl (I) [10, 20, 19] [25, 17]
== foldl (I) [10, 20, 19, 25] [17]
== foldl (I) [10, 20, 19, 25, 17] []
== [10, 20, 19, 25, 17]

Consider this step in the application of foldl:

foldl (I) [10, 20, 19, 25] [17]

The [17] is appended to the list [10, 20, 19, 25]. In many functional programming
languages, that is an expensive operation. Dimitre Novatchev has an excellent explanation for
why appending to a list is an expensive operation:

Appending to a list causes the whole list to be copied and is O(N).

Now, let's trace an application of foldr:

foldr (I) 0 [10, 20, 19, 25, 17]

== [10] foldr (I) '' [20, 19,25, 17]
== [10, 20] foldr (I) '' [19, 25, 17]
== [10, 20, 19] foldr (I) '' [25, 17]
== [10, 20, 19, 25] foldr (I) '' [17]
== [10, 20, 19, 25, 17] foldr (I) '' []
== [10, 20, 19, 25, 17] []
== [10, 20, 19, 25] [17]
== [10, 20, 19] [25, 17]
== [10, 20] [19, 25, 17]
== [10] [20, 19, 25, 17]
== [10, 20, 19, 25, 17]

Consider this step in the application of foldr:

[10, 20, 19, 25] [17]

The item 25 is prepended to the list [17]. In many functional programming languages, that is
an instant operation. Again, Dimitre Novatchev has an excellent explanation for why it is an
inexpensive operation to prepend a single item to a list:

Prepending a list is making just the "next pointer" of an item point
 to the list -- an O(1) operation.

To recap: when using folds, use foldr not foldl.

Higher-Order Functions

Higher-order functions are functions that can accept functions as arguments or return functions
as values.

map, filter, foldl, and foldr are higher-order functions. Make them part of your library.

Fabulous Book

This book has a fantastic description of the map, filter, foldl, and foldr function:

Real World Haskell by Bryan O'Sullivan, John Goerzen, and Don Stewart

XSLT 1.0 Implementation of map, filter, foldl, foldr

I created an XSLT 1.0 implementation of map, filter, foldl, and foldr:

http://www.xfront.com/higher-order-functions.zip

All of the examples described in this article are contained in that zip file.

http://www.xfront.com/higher-order-functions.zip

	3 Common Patterns in XML Processing
	XML Documents Contain Lists
	3 Common Ways of Processing Lists
	Map
	Filter
	Fold
	Higher-Order Functions
	Fabulous Book
	XSLT 1.0 Implementation of map, filter, foldl, foldr

