
Streams

Roger L. Costello
September 2010

Introduction

Streams have the potential to take XML to the next level by facilitating the processing of
huge XML documents.

A stream is a sequence of data. For example, a series of bank deposits and withdrawals is
a stream. The sequence of integers between 10,000 and 100,000,000 is a stream. There
may even be infinite streams.

What distinguishes a stream from an ordinary sequence is delayed evaluation. The idea is
this: construct a stream only partially and pass the partial construction to the program that
consumes the stream. If the consumer attempts to access a part of the stream that has not
yet been constructed, the stream will automatically construct just enough more to produce
the required part, thus preserving the illusion that the entire stream exists.

Example #1

An XML document records an individual’s bank deposits and withdrawals for a period of
time:

 <transactions>
 <withdrawal>30</withdrawal>
 <deposit>40</deposit>
 <deposit>50</deposit>
 <withdrawal>20</withdrawal>
 <withdrawal>45</withdrawal>
 <deposit>80</deposit>

 ...
 </transactions>

Start at the first transaction:

 <withdrawal>30</withdrawal>

The following sibling transactions are provided only as the consuming program needs
them, i.e., the transactions are provided on demand.

Suppose the start balance is 100. The consuming program asks for the balance after the
first transaction. Here it is:

 70

The consuming program then asks for the balance after the next transaction. This results
in providing the next transaction (i.e., visiting the following sibling) and processing it.
Here is the new balance:

 110

And so forth.

The transactions are provided as the consuming program requests them. This on-demand
processing is well-suited to a SAX-style XML processor.

Example #2

What is the second prime number in the interval from 10,000 to 100,000,000?

Let's consider three approaches to solving this question.

Approach #1: Use Sequence Manipulations

Enumerate all the values in the interval. Filter them using a prime test. This leaves only
the prime values. Select the second prime value.

Here's a graphic that illustrates the process:

Advantage

This approach is elegant. It solves the problem by assembling four reusable sequence
manipulating components:

That's nice!

Disadvantage

The computational overhead is outrageous. We construct a sequence of almost a hundred
million integers, filter this sequence by testing each item for primality, and then ignore
almost all of the result.

Approach #2: Use Incremental Computation

Starting at 10,000 test each number for primality and stop at the second prime number.
Here is pseudocode for this:

NumPrimes = 0
Number = 10000
while (Number < 100000000) {
if (prime(Number)) then NumberPrimes++
if (NumPrimes == 2) then exit

}
output(Number)

Notice the use of assignment statements to keep a record of the number of primes
encountered, i.e., this is a stateful solution.

Advantage

This approach is very efficient computationally.

Disadvantage

The program is an arguably ad hoc set of operations. It doesn't use a set of building
blocks, manipulated with a uniform set of operations.

Approach #3: Use Streams

Streams allow the use sequence manipulations (i.e., building blocks) without incurring
the cost of manipulating sequences in their entirety. With streams we can achieve the best
of both worlds: We can formulate programs elegantly as sequence manipulations, while
attaining the efficiency of incremental computation.

A stream implementation automatically and transparently interleaves the construction of
the stream with its use. Here’s how:

Consider this enumerate-interval function:

enumerate-interval(10000, 100000000)

It will generate all the integers from 10,000 to 100,000,000.

The stream version of enumerate-interval just returns the first integer (10,000) and a
promise to compute the rest if requested. This:

stream-enumerate-interval(10000, 100000000)

generates this:

{10000, promise to compute 10001 to 100000000 if requested}

The first value (10000) is checked for primality. It is not prime so it is discarded. The
next number is requested, which generates

{10001, promise to compute 10002 to 100000000 if requested}

The first value (10001) is checked for primality. It is not prime so it is discarded.

And so forth.

Since only the numbers that are actually needed are produced, it is efficient like the
incremental computation approach. And it has elegance because the stream manipulating
components can be assembled just like puzzle pieces or Lego blocks.

At the heart of a stream implementation is delayed evaluation. You can think of delayed
evaluation as "demand-driven" programming, whereby each stage in the stream process is

activated only enough to satisfy the next stage. We write procedures as if the streams
existed "all at once" when, in reality, the computation is performed incrementally.

Recall the bank transaction example above. We proceed in the same fashion as the
stream-enumerate-interval example. However, rather than using a stream-
enumerate-interval component, we use a stream-enumerate-following-
siblings component. It returns the first transaction (i.e., a <withdraw> element or
<deposit> element) and a promise to provide the following transactions if requested.

Streams are a Rich Subject

I have just barely touched on the subject. There is much more to know about streams.
Here is a sampling from the “wizard book” (see the Reference section below for details
on this book):

Infinite Streams: Above I described how to support the illusion of streams of complete
data even though, in actuality, we compute only as much of the stream as we need to
access. This technique can be exploited to represent sequences efficiently as streams,
even if the sequences are very long. What is more striking, we can use streams to
represent sequences that are infinitely long.

New Module Boundaries: The stream approach can be illuminating because it allows
systems to be built with different boundaries than systems organized around assignment
or state variables. For example, we can think of an entire time series (or signal) as a focus
of interest, rather than the values of the state variables at different moments.

Stateless Programming: One of the major benefits of the assignment statement is that
we can increase the modularity of our systems by encapsulating, or “hiding,” parts of the
state of a large system within local variables. However, there are drawbacks inherent in
introducing assignment (such as the thorny problems of constraining the order of events
and of synchronizing multiple processes). Stream models can provide an equivalent
modularity without the use of assignment. Stream functions are stateless.

Acceleration Techniques: We can transform a stream with a sequence accelerator that
converts a sequence of approximations to a new sequence that converges to the same
value as the original, only faster. Although these acceleration techniques could be
implemented without using streams, the stream formulation is particularly elegant and
convenient because the entire sequence of states is available to us as a data structure that
can be manipulated with a uniform set of operations.

Streams of Streams: We can merge two streams or n streams. We can create a stream of
streams (i.e., a tableau) in which each stream is the transform of the preceding one.

Implementing Streams

XSLT 2.0 has sequences. This makes it particularly well-suited to implement streams.

Here’s how to implement the stream-enumerate-interval function:

I defined a stream namespace:

xmlns:stream="http://www.data-structures.org/stream/"

I created a function enumerate-interval in the stream namespace:

<xsl:function name="stream:enumerate-interval" as="item()*">
 <xsl:param name="low" as="xs:integer"/>
 <xsl:param name="high" as="xs:integer"/>

 ...
</xsl:function>

It is invoked with two integers, like this:

stream:enumerate-interval(10000, 100000000)

 This stream is produced:

(10000, <stream:delay/>, <stream:enumerate-interval/>, 10001, 100000000)

10000 is the first value of the interval. It is obtained using the stream:first
function:

stream:first(stream:enumerate-interval(10000, 100000000))

Returns:

 10000

The <stream:delay> element indicates that the function has delayed computing the
rest of the interval but it promises to compute the rest of the interval if requested.

The <stream:enumerate-interval/> element identifies the function to be
invoked, should there be a need to compute the rest of the interval.

10001 is the start of the rest of the interval. 100000000 is the end of the interval.

The function, stream:rest, returns the rest of the stream. For example:

stream:rest(stream:enumerate-interval(10000, 100000000))

Returns:

(10001, <stream:delay/>, <stream:enumerate-interval/>, 10002, 100000000)

Thus, the second value in the interval is the first value of the rest of the stream:

stream:first(
stream:rest(

stream:enumerate-interval(10000, 100000000)
)

)

Returns:

10001

Recall Example #2: What is the second prime number in the interval from 10,000 to
100,000,000?

Using the functions just described, the problem is elegantly and efficiently solved:

stream:first(
stream:rest(

stream:rest(
stream:filter(

$prime,
stream:enumerate-interval(10000,
100000000)

)
)

)
)

The variable $prime identifies a function that, given a number, returns true if it is prime
and false otherwise.

The stream:filter function takes two arguments: (1) An operator (e.g., prime),
and a stream. It applies the operator to each value in the stream (of course, it does this
"on demand" just like stream:enumerate-interval)

Recall Example #1: Process each bank transaction.

This is elegantly and efficiently solved using streams:

stream:iterator(

stream:accumulate(
$credit-debit,
100,
stream:enumerate-following-
siblings(/transactions/child::*[1])

)
)

The variable $credit-debit identifies a function that, given a starting balance and
either a <withdraw> element or a <deposit> element, returns the balance minus the
withdrawal amount or plus the deposit amount.

The stream:accumulate function takes three arguments: (1) An operator (e.g.,
credit-debit), an initial value (e.g., 100), and (3) a stream. It applies the operator to
each value in the stream, using the initial value as the starting value (of course, it does
this "on demand").

The stream:iterator function takes one argument: A stream. It recursively requests
each value in the stream.

Sample Stream Programs

Generate the odd values in the range 1 to 100:

stream:filter($odd, (stream:enumerate-interval(1, 100)))

Apply (i.e., map) the absolute value function to the integers in the interval -5 to 5:

stream:map($stream-abs, stream:enumerate-interval(-5, 5))

What is the hundredth prime number in the range 1 to 1,000,000:

stream:ref(
stream:filter(

$prime,
stream:enumerate-interval(1, 1000000)

),
100

)

Stream Library

I created a library of functions for manipulating streams.

Here are the stream functions:

stream:empty(stream): returns true if the stream is empty, false otherwise.

stream:first(stream): returns the first value in the stream.

stream:rest(stream): recall that a stream contains a first value and a promise to evaluate
the rest if requested. Invoke this function when you want to cash in on that promise. That
is, this function evaluates the rest of the stream. Actually, it returns the first value in the
rest and a promise to evaluate the rest if requested.

stream:ref(stream, i): returns the i’th value in the stream. Example: if the stream is the
interval 1 to 10 then stream:ref(stream, 2) returns 2.

stream:iterator(stream, N): returns the first N values in the stream.

stream:iterator(stream): returns all the values in the stream (it keeps recursively
processing the stream until it reaches an empty stream).

stream:map(proc, stream): applies (i.e., maps) the procedure, proc, to each value in the
stream. Actually, if applies proc to the first value in the stream and returns it along with a
promise to apply proc to the rest if requested.

stream:enumerate-interval(low, high): returns the integers from low to high. Actually,
it returns the first integer and a promise to enumerate the rest if requested.

stream:enumerate-following-siblings(node): returns the (element) node and all its
following siblings. Actually, it returns the first node and a promise to provide the rest if
requested.

stream:filter(predicate, stream): this applies predicate to each value in the stream.
Actually, it applies the predicate to the first value in the stream and a promise to apply
the predicate to the rest if requested. Example: suppose the stream is 1 to 10 and the
predicate is odd (i.e., is the number an odd number?). Then stream:filter(odd, stream)
returns 1, 3, 5, 7, 9.

 stream:accumulate(op, initial, stream): this applies the operation, op, to the stream
using "initial" as the starting value. Actually, it applies op to the first value in the stream
and a promise to apply it to the rest if requested. For example, suppose op is “multiply,”
the initial value is 1, and the stream is the integers from 1 to 10. Then
stream:accumulate(multiply, 1, stream) produces this stream: 1 * 2 * 3 * 4 * ... * 10.

stream:abs(stream): this returns the absolute value of each value in the stream. Actually,
it returns the absolute value of the first value in the stream and a promise to return the
absolute value of the rest if requested.

 stream:credit-debit(balance, stream): this is used exclusively with an XML document
containing a sequence of sibling <withdraw> and <deposit> elements. It goes through
each node in the sequence and credits/debits the balance. Actually, it credits/debits the
first node along with a promise to do the rest if requested.

Here’s a zip file containing the stream library along with a test file:

http://www.xfront.com/stream/stream-library.zip

I hope you’ll give it a try. Let me know of any bugs. If you add more functions please
send them along.

Reference and Acknowledgement

Everything I know about streams I learned from this fabulous book (a.k.a. the wizard
book):

Structure and Interpretation of Computer Programs by Abelson, Sussman, and Sussman.

Thanks Dimitre Novatchev. I used your technique for creating functions that manipulate
functions extensively in the implementation of streams.

http://www.amazon.com/Structure-Interpretation-Computer-Programs-Engineering/dp/0262011530/ref=sr_1_1?ie=UTF8&s=books&qid=1284227561&sr=8-1
http://www.xfront.com/stream/stream-library.zip

	Streams
	Introduction
	Example #1
	Example #2
	Approach #1: Use Sequence Manipulations
	Advantage
	Disadvantage
	Approach #2: Use Incremental Computation
	Advantage
	Disadvantage
	Approach #3: Use Streams

	Streams are a Rich Subject
	Implementing Streams

