
4

Default Namespace - targetNamespace or
XMLSchema?

Table of Contents
Issue
Introduction
Approach 1: Default XMLSchema, Qualify targetNamespace
Approach 2: Qualify XMLSchema, Default targetNamespace
Approach 3: No Default Namespace - Qualify both XMLSchema and
targetNamespace
Best Practice

Issue
When creating a schema should XMLSchema (i.e., http://www.w3.org/2001/XMLSchema) be the
default namespace, or should the targetNamespace be the default, or should there be no default
namespace?

Introduction

Except for no-namespace schemas, every XML Schema uses at least two namespaces - the
targetNamespace and the XMLSchema (http://www.w3.org/2001/XMLSchema) namespace, e.g.,

Library

Book

BookCatalogue

http://www.publishing.org (targetNamespace)

element
annotation

documentation

complexType

schema

sequence

http://www.w3.org/2001/XMLSchema

string

integer

Library.xsd

This schema is comprised
of components from two
namespaces. Which
namespace should be
the default?

CardCatalogueEntry

5

There are three ways to design your schemas, with regards to dealing with these two namespaces:

1. Make XMLSchema the default namespace, and explicitly qualify all references to components
in the targetNamespace.

2. Vice versa - make the targetNamespace the default namespace, and explicitly qualify all
components from the XMLSchema namespace.

3. Do not use a default namespace - explicitly qualify references to components in the
targetNamespace and explicitly qualify all components from the XMLSchema namespace.

Let’s look at each approach in detail. In the following discussions we will consider this scenario:

targetNamespace="http://www.publishing.org"
include BookCatalogue.xsd
…
"ref" the Book element in BookCatalogue

Library.xsd

BookCatalogue.xsd

The BookCatalogue schema must
either:
- have the same namespace as
 the Library schema, or
- have no namespace.

Declare an element "Book"
globally so that it can be
reused by other schemas,
e.g., the Library schema

6

Approach 1: Default XMLSchema, Qualify targetNamespace

Below is a Library schema which demonstrates this design approach. It <include>s a
BookCatalogue schema, which contains a declaration for a Book element. The Library schema
references (“ref”s) the Book element.

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.library.org"
 xmlns:lib="http://www.library.org"
 elementFormDefault="qualified">
 <include schemaLocation="BookCatalogue.xsd"/>
 <element name="Library">
 <complexType>
 <sequence>
 <element name="BookCatalogue">
 <complexType>
 <sequence>
 <element ref="lib:Book"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
</schema>

Default namespace is XMLSchema

Set "lib" to point to the targetNamespace

Qualify the reference to Book

Note that XMLSchema is the default namespace. Consequently, all the components used to
construct the schema - element, include, complexType, sequence, schema, etc - have no
namespace qualifier on them.

There is a namespace prefix, lib, which is associated with the targetNamespace. Any references
(using the “ref” attribute) to components in the targetNamespace (Library, BookCatalogue,
Book, etc) are explicitly qualified with lib (in this example there is a ref to lib:Book).

Advantages:

If your schema is referencing components from multiple namespaces then this approach gives a
consistent way of referring to the components (i.e., you always qualify the reference).

Disadvantages:

Schemas which have no-targetNamespace must be designed so that the XMLSchema
components (element, complexType, sequence, etc) are qualified. If you adopt this approach to
designing your schemas then in some of your schemas you will qualify the XMLSchema
components and in other schemas you won’t qualify the XMLSchema components. Changing
from one way of designing your schemas to another way can be confusing.

7

Approach 2: Qualify XMLSchema, Default targetNamespace

This design approach is the mirror image of the first approach:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.library.org"
 xmlns="http://www.library.org"
 elementFormDefault="qualified">
 <xsd:include schemaLocation="BookCatalogue.xsd"/>
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BookCatalogue">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Book"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Default namespace is targetNamespace

Book is in the default namespace (thus,
no namespace qualifier required)

Set "xsd" to point to the XMLSchema
namespace

Qualify the XMLSchema components
(schema, include, element, complexType,
sequence)

With this approach all the components used to construct a schema are namespace qualified (with
xsd:).

There is a default namespace declaration that declares the targetNamespace to be the default
namespace. Any references to components in the targetNamespace are not namespace qualified
(note that the ref to Book is not namespace qualified).

Advantages:

Schemas which have no-targetNamespace must be designed so that the XMLSchema
components (element, complexType, sequence, etc) are qualified. This approach will work
whether your schema has a targetNamespace or not. Thus, with this approach you have a
consistent approach to designing your schemas - always namespace-qualify the XMLSchema
components.

Disadvantages:

If your schema is referencing components from multiple namespaces then for some references
you will namespace-qualify the reference, whereas other times you will not (i.e., when you are
referencing components in the targetNamespace). This variable use of namespace qualifiers in
referencing components can be confusing.

8

Approach 3: No Default Namespace - Qualify both XMLSchema and
targetNamespace

This design approach does not have a default namespace:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.library.org"
 xmlns:lib="http://www.library.org"
 elementFormDefault="qualified">
 <xsd:include schemaLocation="BookCatalogue.xsd"/>
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BookCatalogue">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="lib:Book"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Qualify the XMLSchema components
(schema, include, element, complexType,
sequence)

Set "xsd" to point to the XMLSchema
namespace

Set "lib" to point to the targetNamespace

Qualify the reference to Book

Note that both the XMLSchema components are explicitly qualified, as well as are references to
components in the targetNamespace.

Advantages:
[1] Schemas which have no-targetNamespace must be designed so that the XMLSchema

components (element, complexType, sequence, etc) are qualified. With this approach all
your schemas are designed in a consistent fashion.

[2] If your schema is referencing components from multiple namespaces then this approach
gives a consistent way of referencing components (i.e., you always qualify the reference).

Disadvantages:

Very cluttered: being very explicit by namespace qualifying all components and all references
can be annoying when reading the schema.

Best Practice
There is no clear-cut best practice with regards to this issue. In large part it is a matter of
personal preference.

