Should it be an Element or a Type?

Table of Contents

Issue
Introduction
Best Practice

Issue

When should an item be declared as an element versus when should it be defined as a type?

Introduction

This issue is best discussed by way of example:

Example

Shoul d “Warranty” be declared as an el ement:
<xsd: el ement nane="VWarranty”>

</ xsd: el enment >
or as a type:
<xsd: conpl exType name="Warranty”>

</ xsd: conpl exType>

Best Practice

[1] When in doubt, make it a type. You can always create an element from the type, if needed.
With a type, other elements can reuse that type.

Example. If you canit decide whether to make Warranty an element or a type, then make it a
type:

<xsd: conpl exType nanme="Warranty” >

</ xsd: conpl exType>



If you decide later that you need a Warranty element, you can create one using the Warranty
type:

<xsd: el ement nanme="Warranty” type="Warranty”/>

Recall that elements and types are in different Symbol Spaces. Hence, you can have an element
and type with the same name.

[2] Ifthe item is not intended to be an element in instance documents then define it as a type.

Example. If you will never see this in an instance document:
<Warranty>
</ Viar r ant y>

then define Warranty as a complexType.

[3] Ifthe itemis content is to be reused by other items then define it as a type.

Example. If other items need to use Warrantyis content, then define Warranty as a type:
<xsd: conpl exType name="Warranty”>
</ xsd: conpl exType>

<xsd: el ement nanme="Prom ssoryNote” type="Warranty”/>
<xsd: el ement nanme="AutoCertificate” type="Warranty”/>

The example shows two elements - PromissoryNote and AutoCertificate - reusing the Warranty
type.

[4] fthe item is intended to be used as an element in instance documents, and itis required that
sometimes it be nillable and other times not, then it must be defined it as a type.

Example. Letis first see how not to do it. Suppose that we create a Warranty element:
<xsd: el emrent name="“"Warranty”>
</ xsd el enent >

The Warranty element can be reused elsewhere by refiing it:
<xsd: el ement ref="Warranty”/>

Suppose that we also need a version of Warranty that supports a nil value. You might be tempted
to do this:

<xsd: el ement ref="Warranty” nillable="true”/>

10



This is not legal. This dynamic morphing capability (i.e., reusing a Warranty element declaration
while simultaneously adding nillability) cannot be achieved using elements. The reason for this
is that the ref and nillable attributes are mutually exclusive - you can use ref, or you can use
nillable, but not both. The only way to accomplish the dynamic morphing capability is by
defining Warranty as a type:

<xsd: conpl exType nane="Warranty”>
</ xsd conpl exType>
and then reusing the type:
<xsd: el enrent nanme=“Warranty” nillable="true” type="Warranty”/>
<xsd el ement name=“Warranty” type=“Warranty”/>

In the first case Warranty is nillable. In the second case itis not nillable.

[5] If the item is intended to be used as an element in instance documents and other elements
are to be allowed to substitute for the element, then it must be declared as an element.

Example. Suppose that we would like to enable instance document authors to use
interchangeably the vocabulary (i.e., tag name) Warranty, Guarantee, or Promise, i.e.,

<xsd: Warranty>
</ xsd Wrranty>
<xs;j; éJar ant ee>
</ xsd Guar ant ee>
<xsa; i:’rom' se>

</ xsd; i:’.rom' se>

To enable this substitutable-tag-name capability, Warranty, Guarantee, and Promise must be
declared as elements, and made members of a substitutionGroup:

<xsd: el emrent name="Warranty”>
</ xsd: el emrent >

<xsd: el ement nane=" Guarant ee” substituti onG oup="Warranty”/>
<xsd: el ement nane="Prom se” substitutionG oup="Warranty”/>

11



