
What is the Overlap between
XML Schema 1.1

vs.
XML Schema 1.0 + Schematron?

Roger L. Costello
August 2012

XML Schema 1.1 has twenty one new capabilities.

How do those new capabilities stack up against a tandem of 1.0 and Schematron? Can the new
capabilities be implemented using the existing 1.0 schema technology plus Schematron?

It is an important question. Organizations are well entrenched in their 1.0 XSDs plus their
Schematron schemas. They have invested heavily in these technologies. And they have expertise
in these technologies. And there is good support for these technologies.

So what is the benefit of switching to XSD 1.1? Will it provide more capabilities than the
existing tandem of XSD 1.0 and Schematron?

This paper attempts to shed some light on these questions.

Here is a Venn Diagram. The left circle is XSD 1.1. The right circle is XSD 1.0 plus Schematron.
The new capabilities in XML Schema 1.1 are shown. If the new capability can be equivalently
expressed using a tandem of XSD 1.0 plus Schematron then it is in the intersection. If the new
capability cannot be equivalently expressed then it is to the left, exclusively in the XSD 1.1
circle. Capabilities that are unique to XSD 1.0 plus Schematron are to the right, exclusively in
the XSD 1.0 plus Schematron circle.

The following table shows in the left column the new capabilities in XML Schema 1.1 and in the
right column it describes how to achieve the equivalent capability using a tandem of 1.0 plus
Schematron. If the 1.1 capability cannot be achieved using the tandem then it says so.

New capability provided by
XML Schema 1.1

How to achieve the equivalent capability using a
tandem of XML Schema 1.0 plus Schematron

1. <assert> This capability is readily achieved using Schematron. In
fact, Schematron provides more capability than does the
<assert> element because <assert> is limited just to one
XML document, whereas Schematron can make assertions
across multiple XML documents.

2. <assertion> facet Again, Schematron provides this capability, plus more.
3. <alternative> The equivalent capability can be achieved by the 1.0

schema declaring an element of type, xs:anyType, and then

the Schematron schema contains the rules, “If the value of
the attribute is A then the content of the element must be
xyz; if the value of the attribute is B then the content of the
element must be wxy; and so forth”

4. error data type Readily achieved using a Schematron rule that checks for
erroneous data.

5. <openContent> This can be achieved by adding <any> elements
everywhere open content is desired. This is not as clean as
the <openContent> element provided in XSD 1.1.

6. defaultAttributes The equivalent capability can be achieved by the 1.0
schema declaring anyAttribute in each complexType and
then in Schematron have rules that specify the allowable
default attributes.

7. vendor unique extensions and
facets

The equivalent capability can be achieved by the 1.0
schema declaring an element of type string and then in
Schematron specify the rules for the extensions and facets.

8. vc:minVersion,
vc:maxVersion,
vc:typeAvailable,
vc:typeUnavailable,
vc:facetAvailable,
vc:facetUnavailable

These cannot be achieved using a tandem of XSD 1.0 and
Schematron. However, vc is probably not useful until there
are more versions of XML Schema.

9. inheritable attributes Readily achieved using a Schematron rule that has
assertions which take into account the value of attributes
anywhere in the XML document, even across XML
documents.

10
.

enhanced <all> element Readily achieved by using a repeatable <choice> and then
using Schematron rules to enforce cardinality.

11. enhanced substitutionGroup Readily achieved by replacing the substitutionGroup with
an XSD 1.0 <choice> element.

12
.

new attributes of <any> and
<anyAttribute>

Readily achieved through the use of Schematron rules.

13
.

more flexible rules for
wildcards

This cannot be achieved using a tandem of XSD 1.0 and
Schematron.

14
.

element can have multiple
attributes of type ID and the
ID type can have a fixed or
default value

Declare multiple attributes to be of type string and then
use Schematron to enforce uniqueness.

15
.

<override> This cannot be achieved using a tandem of XSD 1.0 and
Schematron.

16
.

enhanced targetNamespace
enables a complexType to
restrict a complexType in
another namespace

This cannot be achieved using a tandem of XSD 1.0 and
Schematron.

17
.

anyAtomicType Declare an element to be of type anyType, and then apply
Schematron rules to ensure the element’s value is

anyAtomicType.
18
.

dateTimeStamp Declare the item to be of type dateTime and then use
Schematron to verify the dateTime value has a time zone
value.

19
.

yearMonthDuration Declare the item to be of type duration and then use
Schematron to verify the duration value contains just years
and months.

20
.

dayTimeDuration Declare the item to be of type duration and then use
Schematron to verify the duration value contains just day
and time.

21
.

explicitTimezone facet Use Schematron to check that the value specifies a
timezone.

	What is the Overlap between
XML Schema 1.1
vs.
XML Schema 1.0 + Schematron?

