
45

Creating Variable Content Container Elements

Table of Contents
Issue
Introduction
Example
Method 1: Implementing variable content containers using an abstract element

and element substitution
Method 2: Implementing variable content containers using a <choice> element
Method 3: Implementing variable content containers using an abstract type and

type substitution
Method 4: Implementing variable content containers using a dangling type

Best Practice

Issue

What is the Best Practice for implementing a container element that is to be comprised of
variable content?

Introduction

A typical problem when creating an XML Schema is to design a container element (e.g.,
Catalogue) which is to be comprised of variable content (e.g., Book, or Magazine, or ...)

<Catalogue>
   - variable content section -
</Catalogue>

<Book> or <Magazine> or ...

Catalogue is called a variable content container

Some things to consider:

• Do we allow the elements in the variable content container to come from disjoint sources, i.e.,
do we allow the container element to contain dissimilar, independent, loosely coupled
elements?

• How do we design the variable content container so that the kinds of elements which it may
contain can grow over time, i.e., how do we design an extensible variable content container?



46

Example

Throughout this discussion we will consider variable content containers (e.g., <Catalogue>)
which are comprised of a collection of elements, where each element is variable.

Here’s an example of a <Catalogue> container element comprised of two different kinds of
elements:

  <Catalogue>
    <Book> ... </Book>
    <Magazine> ... </Magazine>
    <Book> ... </Book>
  </Catalogue>

Below are four methods for implementing variable content containers. 

Method 1: Implementing variable content containers using an abstract element and
element substitution

Description:

There are five XML Schema concepts that must be understood for implementing this method:

• an element can be declared abstract.
• abstract elements cannot be instantiated in instance documents (they are only placeholders).
• in instance documents the abstract element must be substituted by  non-abstract (i.e., concrete)

elements which have been declared to be in a substitutionGroup with the abstract element.
• elements may be declared to be in a substitutionGroup with the abstract element iff their type

is the same as, or derives from the abstract element’s type.
• the abstract element and all elements in its substitutionGroup must be declared as global

elements.

<Catalogue>
   - variable content section 
</Catalogue>

Publication (abstract)

<Book>

<Magazine>

substitutionGroup

"substitutable for"

"substitutable for"



47

Implementation:
Declare an abstract element (Publication):

  <xsd:element name=“Publication” abstract=“true”
         type=“PublicationType”/>

Declare a variable content container element (Catalogue) to have as its content the abstract
element (“ref” to the abstract element declaration):

  <xsd:element name=“Catalogue”>
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element ref=“Publication”

               maxOccurs=“unbounded”/>
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>

Note that maxOccurs=“unbounded”, so Catalogue may contain a collection (one or more) of
Publication elements.

Declare the concrete elements (Book and Magazine) that are to be the contents of the variable
content container and declare them to be in a substitutionGroup with the abstract element:

  <xsd:element name=“Book” substitutionGroup=“Publication”
         type=“BookType”/>
  <xsd:element name=“Magazine” substitutionGroup=“Publication”
         type=“MagazineType”/>

In order for Book and Magazine to substitute for Publication, their types (BookType and
MagazineType) must derive from Publication’s type (PublicationType). 

PublicationType

BookType MagazineType



48

Here are the type definitions:

PublicationType - the base type:

  <xsd:complexType name=“PublicationType”>
    <xsd:sequence>
      <xsd:element name=“Title” type=“xsd:string”/>
      <xsd:element name=“Author” type=“xsd:string”
             minOccurs=“0” maxOccurs=“unbounded”/>
      <xsd:element name=“Date” type=“xsd:gYear”/>
    </xsd:sequence>
  </xsd:complexType>

BookType - extends PublicationType by adding two new elements, ISBN and Publisher:

  <xsd:complexType name=“BookType”>
    <xsd:complexContent>
      <xsd:extension base=“PublicationType”>
        <xsd:sequence>
          <xsd:element name=“ISBN” type=“xsd:string”/>
          <xsd:element name=“Publisher” type=“xsd:string”/>
        </xsd:sequence>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

MagazineType - restricts PublicationType by striking out the Author element:

  <xsd:complexType name=“MagazineType”>
    <xsd:complexContent>
      <xsd:restriction base=“PublicationType”>
        <xsd:sequence>
          <xsd:element name=“Title” type=“xsd:string”/>
          <xsd:element name=“Author” type=“xsd:string”
                 minOccurs=“0” maxOccurs=“0”/>
          <xsd:element name=“Date” type=“xsd:gYear”/>
        </xsd:sequence>
      </xsd:restriction>
    </xsd:complexContent>
  </xsd:complexType>

The following page shows what an instance document looks like with this method:



49

<?xml version="1.0"?>
<Catalogue xmlns="http://www.catalogue.org"
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                   xsi:schemaLocation=
                                    "http://www.catalogue.org
                                     Catalogue.xsd">
        <Book>
                <Title>Illusions The Adventures of a Reluctant Messiah</Title>
                <Author>Richard Bach</Author>
                <Date>1977</Date>
                <ISBN>0-440-34319-4</ISBN>
                <Publisher>Dell Publishing Co.</Publisher>
        </Book>
        <Magazine>
                <Title>Natural Health</Title>
                <Date>1999</Date>
        </Magazine>
        <Book>
                <Title>The First and Last Freedom</Title>
                <Author>J. Krishnamurti</Author>
                <Date>1954</Date>
                <ISBN>0-06-064831-7</ISBN>
                <Publisher>Harper &amp; Row</Publisher>
        </Book>
</Catalogue>

Advantages:

Extensible: This method allows you to extend the set of elements that may be used in the
variable content container element, even if the schema for the variable content container element
is outside your control. For example, suppose that you do not  have privilege to modify the above
Catalogue schema. Currently, the Catalogue element can only contain Book and Magazine
elements. But suppose that your application has a hard requirement for CD elements as well:

  <Catalogue>
    <Book> ... </Book>
    <CD> ... </CD>
    <Magazine> ... </Magazine>
    <Book> ... </Book>
  </Catalogue>



50

How can you extend the set of elements that Catalogue may be comprised of, without modifying
its schema?

Answer: You can create your own separate schema which contains a declaration of CD  (with a
type, CDType, that extends the PublicationType in the Catalogue schema), and declares CD to be
in the Publication substitutionGroup:

  <xsd:include schemaLocation=“Catalogue.xsd”/>
  <xsd:complexType name=“CDType”>
    <xsd:complexContent>
      <xsd:extension base=“PublicationType”>
        <xsd:sequence>
          <xsd:element name=“RecordingCompany”
                 type=“xsd:string”/>
        </xsd:sequence>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>
  <xsd:element name=“CD” substitutionGroup=“Publication”
         type=“CDType”/>

The CD element meets the requirements for being in the variable content container:

• its type (CDType) derives from the PublicationType, and
• it is a member of the Publication element’s substitutionGroup.

Book, Magazine, and CD may now be used within the Catalogue element, e.g.,

<?xml version="1.0"?>
<Catalogue xmlns="http://www.catalogue.org"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation=
                          "http://www.catalogue.org
                           CD.xsd">
        <Book>
                <Title>Illusions The Adventures of a Reluctant Messiah</Title>
                <Author>Richard Bach</Author>
                <Date>1977</Date>
                <ISBN>0-440-34319-4</ISBN>
                <Publisher>Dell Publishing Co.</Publisher>
        </Book>
        <CD>
                <Title>Timeless Serenity</Title>
                <Author>Dyveke Spino</Author>
                <Date>1984</Date>
                <RecordingCompany>Dyveke Spino Productions</RecordingCompany>
        </CD>
        ...
</Catalogue>



51

Thus, we see that this method allows us to extend the set of elements that may be used in the
Catalogue element, without modifying its schema. Nice!

Semantic Cohesion: the elements in the variable content container all descend from the same
type hierarchy (PublicationType). This type hierarchy binds them together,   giving a structural
(and, by implication, semantic) coherence to all the elements that may be in the variable content
container.

Disadvantages:

No Independent Elements: The type of the elements that are to be used in the variable content
container must all descend from the abstract element’s type (PublicationType).   Further, the
elements must be in a substitutionGroup with the  abstract element. Thus, the variable content
container cannot contain elements whose type does not derive from the abstract element’s type,
or is not in the substitutionGroup with the abstract element - as would typically be the case with
independently developed elements. For example, suppose another schema author creates a
“Newspaper” element, with a type that does not descend from  PublicationType.  <Catalogue>
would not be able to contain the <Newspaper>  element.

Limited Structural Variability: Over time a schema will evolve, and the kinds of elements
which may occur in the variable content container will typically grow. There is no way to know
apriori in what direction it will grow. The new elements may be conceptually related but
structurally vastly different from the original set of elements.  The abstract element’s type (e.g.,
PublicationType) may have been a good base type for the original set of elements which were all
structurally related, but may not be a good base type for the new elements which have vastly
different structures.

So you are faced with a tradeoff:

• create a simple base type to support lots of different structures    (but then you can make less
assumptions about the structure of the members), or

• create a rich base type to support strong data type checking (but then you reduce the ability to
add elements with radically different types)

Nonscalable Processing: Processing a collection of differently named elements  requires a lot of
special-case code. For example, consider  a stylesheet to process each element in <Catalogue>:

   <xsl:if test=“Book”>
    -- process Book --
   </xsl:if>
   <xsl:if test=“Magazine”>
    -- process Magazine --
   </xsl:if>

This stylesheet snippet suffers from lack of scalability, i.e., it breaks as soon as a new element is
added.



52

This argument needs some qualification. If the contents of <Catalogue> are just elements that
substitute for the abstract Publication element, then each element can be uniformly processed, as
follows:

   <xsl:for-each select=“Catalogue/*”>
    -- process the element --
   </xsl:for-each>

This stylesheet snippet processes each element within Catalogue, regardless of the element name.
Obviously, this is scalable, and does not break when a new element is added.

Processing becomes non-scalable when Catalogue contains multiple abstract elements:

  <xsd:element name=“Catalogue”>
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element ref=“Publication”
               maxOccurs=“unbounded”/>
        <xsd:element ref=“Retailer”
               maxOccurs=“unbounded”/>
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>

Suppose that both Publication and Retailer are abstract elements, and there can be any number of
each kind of element within Catalogue. Here’s a sample instance:

  <Catalogue>
    <Book> ... </Book>
    <Magazine> ... </Magazine>
    <Book> ... </Book>
    <MarketBasket> ... </MarketBasket>
    <Macys> ... </Macys>
  </Catalogue>

If you wish to process just the Publication elements (e.g., Book, Magazine) then you will need to
write special-case code, as shown above. This is not scalable. Every time a new element is added
into the collection of elements that may substitute for the Publication element then your code will
have to be updated. This is costly.

No Control over Namespace Exposure: This method requires that the elements which may be
used in the variable content container be in a substitutionGroup with the abstract element (e.g.,
Book and Magazine must be in a substitutionGroup with Publication). A requirement of using
substitionGroup is that all elements must be declared globally. The namespace of global elements
can never be hidden in instance documents. As a consequence, there is no way to hide (localize)
the namespaces of the elements used in the variable content container.  This fails the Best
Practice rule which states that you should design your schema to be able to hide or expose
namespaces at your discretion (using elementFormDefault as an exposure switch). (See the
chapter titled Hide (Localize) Versus Expose Namespaces)

HideVersusExpose.html


53

Method 2: Implementing variable content containers using a <choice> element

Description:

This method is quite straightforward - simply list within a <choice> element all the elements
which can appear in the variable content container, and embed the <choice> element in the
container element.

<Catalogue>
   - variable content section 
</Catalogue>

<choice>
     <element name="Book" …/>
     <element name="Magazine" …/>
</choice>

Implementation:
Declare within a <choice> element all the elements (e.g., Book, Magazine) that may be used in
the variable content container. Embed the <choice> element within the container element
(Catalogue):

  <element name=“Catalogue”>
    <complexType>
      <choice maxOccurs=“unbounded”>
        <element name=“Book” type=“BookType”/>
        <element name=“Magazine” type=“MagazineType”/>
      </choice>
    </complexType>
  </element>

Advantages:

Independent Elements: The elements in the variable content container do not need a common
type ancestry. They don’t have to be related in any way. Thus, the variable content container can
contain dissimilar, independent, loosely coupled elements.

Disadvantages:

Nonextensible: Suppose that the Catalogue schema is outside your control. Currently  the
variable content container only supports Book and Magazine. Suppose that you  have a hard
requirement for your instance documents to use CD as well as Book and Magazine within
Catalogue, e.g.,

  <Catalogue>
    <Book> ... </Book>
    <CD> ... </CD>
    <Magazine> ... </Magazine>
    <Book> ... </Book>
  </Catalogue>

This method requires that the <choice> element in the Catalogue schema be modified to include
the CD element. However, we stipulated that the Catalogue schema is outside your control, so it
cannot be modified. This method has serious extensibility restrictions!



54

 No Semantic Coherence: The <choice> element allows you to group together dissimilar
elements. While that has been touted as an advantage, it is really a double-edged sword. The
elements in the variable content container have no type hierarchy to bind them together, to
provide structural (and, by implication, semantic) coherence  among the elements. Thus, when
processing an instance document you can make no assumptions about the structure of the
elements.

Method 3: Implementing variable content containers using an abstract type and
type substitution

Description:

There are three XML Schema concepts that must be understood for implementing this method:

• a complexType can be declared abstract.
• an element declared to be of an abstract type cannot have its type instantiated in instance

documents (that is, the element can be instantiated, but its abstract content may not).
• in instance documents an element with an abstract type must have its content substituted by

content from a non-abstract (concrete) type which derives from the abstract type. This is called
type substitution.

<Catalogue>
   <Publication xsi:type="…">
      - variable content section
   </Publication> 
</Catalogue>

PublicationType (abstract)

BookType                MagazineType

Implementation:

Define an abstract base type (PublicationType):

  <xsd:complexType name=“PublicationType” abstract=“true”>
    <xsd:sequence>
      <xsd:element name=“Title” type=“xsd:string”/>
      <xsd:element name=“Author” type=“xsd:string”
             minOccurs=“0” maxOccurs=“unbounded”/>
      <xsd:element name=“Date” type=“xsd:gYear”/>
    </xsd:sequence>
  </xsd:complexType>



55

Declare the container element (Catalogue) to contain an element (Publication), which is of the
abstract type:

  <xsd:element name=“Catalogue”>
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name=“Publication”

               type=“PublicationType”
               maxOccurs=“unbounded”/>
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>

In instance documents, the content of <Publication> can only be of a concrete type which derives
from PublicationType, such as BookType or MagazineType (we saw these type definitions in
Method 1 above).

With this method instance documents will look different than we saw with the above two
methods. Namely, <Catalogue> will not contain variable content. Instead, it will always contain
the same element (Publication). However, that element will contain variable content:

<?xml version="1.0"?>
<Catalogue xmlns="http://www.catalogue.org"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation=
                          "http://www.catalogue.org
                           Catalogue.xsd">
        <Publication xsi:type="BookType">
                <Title>Illusions The Adventures of a Reluctant Messiah</Title>
                <Author>Richard Bach</Author>
                <Date>1977</Date>
                <ISBN>0-440-34319-4</ISBN>
                <Publisher>Dell Publishing Co.</Publisher>
        </Publication>
        <Publication xsi:type="MagazineType">
                <Title>Natural Health</Title>
                <Date>1999</Date>
        </Publication>
        ...
</Catalogue>

Advantages:

Extensible: Same extensibility benefits as method 1. Namely, this method allows you to easily
extend the set of elements that may be used in the variable content container simply by creating
new types which derive from the abstract type, e.g.,



56

<include schemaLocation="Catalogue.xsd"/>
<complexType name="CDType">
        <complexContent>
            <extension base="PublicationType" >
                <sequence>
                    <element name="RecordingCompany" type="string"/>
                </sequence>
            </extension>
        </complexContent>
</complexType>

CD.xsd

Now the content of
<Publication> may be
BookType, or 
MagazineType, or 
CDType

We have extended the Catalogue schema without modifying it! Here’s an example instance
document with the new CD element:

<?xml version="1.0"?>
<Catalogue xmlns="http://www.catalogue.org"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation=
                          "http://www.catalogue.org
                           CD.xsd">
        <Publication xsi:type="BookType">
                <Title>Illusions The Adventures of a Reluctant Messiah</Title>
                <Author>Richard Bach</Author>
                <Date>1977</Date>
                <ISBN>0-440-34319-4</ISBN>
                <Publisher>Dell Publishing Co.</Publisher>
        </Publication>
        <Publication xsi:type="CDType">
                <Title>Timeless Serenity</Title>
                <Author>Dyveke Spino</Author>
                <Date>1984</Date>
                <RecordingCompany>Dyveke Spino Productions</RecordingCompany>
        </Publication>
        ...
</Catalogue>

Minimal Dependencies: This method has less dependencies (coupling) than method 1.  To
extend the collection of elements that may appear in a variable content container using method 1
you need access to both the abstract element (Publication)  and its type (PublicationType). With
method 3 you only need access to the abstract type. If we assume that in a typical scenario only
the types will be put in publicly accessible schemas, then method 3 is the only viable method.



57

Scalable Processing: Processing a series of <Publication> elements is scalable.  For example, a
stylesheet could process each publication element as follows:

   <xsl:for-each select=“Publication”>
    -- do something --
   </xsl:for-each>

As new types are created (e.g., CDType) no change is needed to the code.

Semantic Cohesion: the elements in the variable content container all descend from the same
type hierarchy. This type hierarchy binds them together, giving a structural (and, by implication,
semantic) coherence among the elements.

Control over Namespace Exposure: the variable part of the variable content container are the
element declarations that are embedded within type definitions.   Consequently, we can control
exposure of the namespaces of the variable content container elements.  This is consistent with
the Best Practice design recommendation we issued for hide (localize) versus expose
namespaces. (See the chapter titled Hide (Localize) Versus Expose Namespaces)

Disadvantages:

No Independent Elements: Same weakness as with method 1.   All types must descend from an
abstract type. This requirement prohibits the use of types which do not descend from the abstract
type, as would typically be the situation when the type is in another, independently developed
schema.

Limited Structural Variability: Same weakness as with method 1.  Namely, to facilitate strong
type checking you want to have a rich base type,  but this is in direct conflict with the desire for
components with vastly different structures, which calls for a weak base type.

Method 4: Implementing variable content containers using a dangling type

Motivation:
Thus far our variable content container has contained complex content (i.e., child elements).
Suppose that we want to create a variable content container to hold simple content?  None of the
previous methods can be used. We need a method that allows us to create simpleType variable
content containers.

There is one key XML Schema concept that must be understood for implementing this method:

• with an <import> element the schemaLocation attribute is optional

Description:

Let’s take an example. Suppose that we desire an element, sensor, which contains the name of a
weather station sensor. For example:

<sensor>Barometric Pressure</sensor>

HideVersusExpose.html


58

There are several things to note:

1. This element holds a simpleType
2. Each weather station may have sensors that are unique to it. Consequently, we must design

our schema so that the sensor element can be customized by each weather station

Here’s an elegant design for making the contents of <sensor> customizable by each weather
station:

Implementation:

Let’s go through the design, step by step. In your schema, declare the sensor element:

<xsd:element name=“sensor” type=“s:sensor_type”/>

Note that the sensor element is declared to have a type “sensor_type”, which is in a different
namespace - the sensor namespace:

xmlns:s=“http://www.sensor.org”

Now here’s the key - when you <import> this namespace, don’t provide a value for
schemaLocation! (In an import element schemaLocation is optional.) For example:

<xsd:import namespace=“http://www.sensor.org”/>

The instance document must then identify a schema that implements sensor_type. Thus, at run
time (i.e., validation time) we are matching up the reference to sensor_type with an
implementation of sensor_type. For example, an instance document may have this:

xsi:schemaLocation=
   “http://www.weather-station.org weather-station.xsd
    http://www.sensor.org boston-sensors.xsd”

In this instance document schemaLocation is identifying a schema, boston-sensors.xsd, which is
to provide the implementation of sensor_type.

Let’s take a look at the schemas and instance documents for the weather station sensor example
we have been considering.  Here’s the main schema, which contains the dangling type:



59

weather-station.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                      targetNamespace="http://www.weather-station.org"
                      xmlns="http://www.weather-station.org"
                      xmlns:s="http://www.sensor.org"
                     elementFormDefault="qualified">
    <xsd:import namespace="http://www.sensor.org"/>
    <xsd:element name="weather-station">
        <xsd:complexType>
            <xsd:sequence>
                <xsd:element name="sensor" type="s:sensor_type"
                                      maxOccurs="unbounded"/>
            </xsd:sequence>
        </xsd:complexType>
    </xsd:element>
</xsd:schema>

An import with no
schemaLocation!

Note that the <import> element does not have a schemaLocation attribute to identify a particular
schema which implements sensor_type. (Stated differently, this schema does not hardcode in the
identity of the schema which is to provide the implementation of sensor_type.) The schema
validator will resolve the reference to sensor_type based upon the collection of schemas that is
provided to it in the instance document.

The Boston weather station creates a schema which implements sensor_type:

boston-sensors.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                      targetNamespace="http://www.sensor.org"
                      xmlns="http://www.sensor.org"
                      elementFormDefault="qualified">
    <xsd:simpleType name="sensor_type">
       <xsd:restriction base="xsd:string">
           <xsd:enumeration value="barometer"/>
           <xsd:enumeration value="thermometer"/>
           <xsd:enumeration value="anenometer"/>
       </xsd:restriction>
    </xsd:simpleType>
</xsd:schema>

This schema provides an implementation for the 
dangling type, sensor_type.



60

Now an instance document can conform to weather-station.xsd and use boston-sensors.xsd as the
implementation of sensor_type:

boston-weather-station.xml

<?xml version="1.0"?>
<weather-station xmlns="http://www.weather-station.org"
                           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                           xsi:schemaLocation=
                                         "http://www.weather-station.org weather-station.xsd
                                          http://www.sensor.org boston-sensors.xsd">
       <sensor>thermometer</sensor>
       <sensor>barometer</sensor>
       <sensor>anenometer</sensor>
</weather-station>

In the 
instance 
document 
we provide 
a schema
which 
implements
the 
dangling 
type.

Suppose that the London weather station has all the sensors that Boston has, plus some additional
ones that are unique to the London weather patterns. Thus, London will create its own
implementation of sensor_type:

london-sensors.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                      targetNamespace="http://www.sensor.org"
                      xmlns="http://www.sensor.org"
                      elementFormDefault="qualified">
    <xsd:simpleType name="sensor_type">
       <xsd:restriction base="xsd:string">
           <xsd:enumeration value="barometer"/>
           <xsd:enumeration value="thermometer"/>
           <xsd:enumeration value="anenometer"/>
           <xsd:enumeration value="hygrometer"/>
       </xsd:restriction>
    </xsd:simpleType>
</xsd:schema>

This schema provides a different implementation for the dangling
type, sensor_type.



61

Note that this schema has an additional sensor_type that Boston does not have - hygrometer.

Just as with the Boston weather station instance document, the London weather station instance
document will conform to a collection of schemas: weather-station.xsd and london-sensors.xsd:

london-weather-station.xml

<?xml version="1.0"?>
<weather-station xmlns="http://www.weather-station.org"
                            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                            xsi:schemaLocation=
                                      "http://www.weather-station.org weather-station.xsd
                                       http://www.sensor.org london-sensors.xsd">
    <sensor>thermometer</sensor>
    <sensor>barometer</sensor>
    <sensor>hygrometer</sensor>
    <sensor>anenometer</sensor>
</weather-station>

The London weather station is able to customize the content of <sensor> by
using london-sensors.xsd, which defines sensor_type appropriately for the
London weather station.  Wow!

Summary:

This method represents an extraordinarily powerful design pattern. The key to this design pattern
is:

1. When you declare the variable content container element give it a type that is in another
namespace, e.g., s:sensor_type

2. When you <import> that namespace don’t provide a value for schemaLocation, e.g.,
<xsd:import namespace=“http://www.sensors.org”/>

3. Create any number of implementations of the dangling type, e.g.,
– boston-sensors.xsd
– london-sensors.xsd

4. In instance documents identify the schema that you want used to implement the dangling
type, e.g.,

xsi:schemaLocation=
  “http://www.weather-station.org weather-station.xsd
   http://www.sensor.org london-sensors.xsd”



62

Both simpleType and complexType:

In our examples we have implemented the dangling type as a simpleType. The implementation of
a dangling type does not have to be a simpleType. A schema could define it as a complexType.

Advantages:

Dynamic: A schema which contains a dangling type is very dynamic. It does not statically hard-
code the identity of a schema to implement the type. Rather, it empowers the instance document
author to identify a schema that implements the dangling type.  Thus, at instance-document-
creation the type implementation is provided (rather than at schema-document-creation)
Applicable to both Simple and Complex Types: A dangling type can be implemented as either
a simpleType or a complexType. The other methods are only applicable to creating variable
content containers with a complex type.

Disadvantages:
Different Namespace: The implementation of the dangling type must be in another namespace.
It cannot be in the same namespace as the variable content container element. If you have a hard
requirement that the contents of your variable content container have the same namespace as the
container element then this method cannot be employed.

Best Practice

Which method you should use to create your variable content containers ultimately depends on
your requirements. Here are some things to consider.

Use Method 1 (abstract element plus element substitution) when:
• It’s okay for all the elements to descend from a common type.
• You need to provide the ability to extend the collection of elements in the variable content

container without modifying its schema.
• You can live with the container elements all being namespace-exposed in instance documents.

Use Method 2 (<choice> element) when:
• You need to contain a collection of dissimilar, independent elements
• It is adequate to have an external authority (i.e., a human) verify the collection of legal

elements. Verification is accomplished by the external authority selecting which elements shall
be allowed in the <choice> element

• Growth of the collection of elements is tightly determined by the external authority that
controls the schema.



63

Use Method 3 (abstract type with type substitution) when:
• All the elements in the variable content container are of the same type, or derived from the

same type
• It’s okay to give all the elements in a variable content container a uniform name.
• The collection of elements may grow, independent of the container schema.
• You need to support namespace-hiding.
• You need to support scalable processing.

Use Method 4 (dangling type) when:
• You need a simpleType variable content container
• You need to extend a simpleType
• You need very dynamic, customizable content

Best Practice: Method 4 is by far the most flexible approach. Unfortunately, as of today (August
16, 2001) none of the schema validators have implemented dangling types. The workaround is to
use the anyType. For example: <xsd:element name=“sensor” type=“anyType”/>. We lose a bit of
type checking with this, but it is the best that we can do today. Encourage the schema validator
developers to support this capability!


