Achieving Maximum Dynamic Capability
In your Schemas

Too often schemas are designed in a static, fixed, rigid fashion. Everything is hardcoded when
the schemais designed. Thereisno variability. Thisis not reflective of nature. Nature constantly
changes and evolves. Nothing is fixed. Asagenera rule of thumb: more dynamic capability =
better schema

Definition of Dynamic: the ability of a schemato change at run-time (i.e., schema validation
time). Contrast this with rigid, fixed, static schemas where everything is predetermined and
unchanging.

Limiting Dynamic Capability
1. Hardcoding a collection of components to a namespace.

When you bind a schemato atargetNamespace you are rigidly fixing the components in that
schemato afixed semantics (in as much as a targetNamespace gives semantics to a schema).

2. Hardcoding areference to atype to the implementation of that type.

When you specify in <import> a value for schemal ocation you are rigidly fixing the identity of
the schemato implement atype.

Achieving Maximum Dynamic Capability

The key to achieving dynamic schemas is to postpone decisions as long as possible. Here are
some ways to do that.

1. Don't hardcode a schemato atargetNamespace. That is, create no-namespace schemas. L et
the application which uses the schema decide on a targetNamespace that is appropriate for
the application. Thus we postpone binding a schemato atargetNamespace as long as
possible -> until application-use-time. Also, the using-application can <redefine>
components in the schema. Thisis making the schema dynamic/morphable. It isnot fixed to
one namespace (semantics). See the discussion on Zero One Or Many Namespaces for more
info.

2. Don’t hardcode the identity of an <import>ed schema. Example, suppose that you declare
an element to have atype from another namespace, e.g.,

<xsd: el enent nanme="sensor” type="s:sensor_type"/>

Observe that sensor_type is from another namespace. Thus, this schemawill need to do an
<import>. Normally we see <import> elements with two attributes - namespace and
schemal_ocation. However, schemal ocation is actually optiona. When you do specify

schemal_ocation then you arerigidly fixing the identity of a schemawhichisto provide an
implementation for sensor_type. We can make things a lot more dynamic by not specifying
schemal_ocation. Instead, let the instance document author identify a schema that implements
sensor_type. This creates avery dynamic schema. The type of the sensor element is not fixed,
static. Thus we postpone binding the type reference (type="s.sensor_type”) to an implementation
of the type aslong as possible -> until schema-validation-time. See the discussion on Dangling
Types for moreinfo.

85

