What does it mean to order a set?
When the ordering module is called with a set then all these functions are suddenly available on the set: first, last, next, prev, etc.
first returns the first atom.
last returns the last atom.
first.next returns the second atom.
But wait!
A set is, by definition, unordered. So how can you order a set? 
Consider this set of colors:
abstract sig Color {}
one sig red extends Color {}
one sig yellow extends Color {}
one sig green extends Color {}
What does it mean to order that set of colors? Suppose we call the ordering module:
open util/ordering[Color]
What does first return? What does last return? What does first.next return?
Let’s have Alloy generate some instances:
run {}
Here are a few of the instances that are generated:
Instance #1
first returns: yellow
last returns: green
first.next returns: red
Instance #2
first returns: yellow
last returns: red
first.next returns: green
Instance #3
first returns: green
last returns: yellow
first.next returns: red
Notice that the ordering is different with each instance.
Now, let’s order a plain signature:
open util/ordering[Time]
sig Time {}
run {}
Only one instance is generated:
Instance #1
first returns: Time0
last returns: Time2
first.next returns: Time1
No more instances!
Lessons Learned
1. For a set created by enumerating its atoms, the ordering module orders the set in any way.
2. For a set created by a signature, the ordering module orders the set this way: Blah0, Blah1, Blah2, …, where “Blah” is the signature name.
[bookmark: _GoBack]The real lesson, however, is that the functions provided in the ordering module (first, last, next, etc.) make it appear that the set is ordered. But that is an illusion, it is just a view placed on top of the set. The set, in fact, has no ordering. 

