Alloy Model of Playing Tic-Tac-Toe

I model the tic-tac-toe game board this way:
one sig gameBoard {
 cells: Row -> Col -> Mark -> Time
}
Mark is either X or O:
enum Mark { X, O }
Row and Col are simply sets:
sig Row {}{ #Row = 3}
sig Col {}{ #Col = 3}
There is a winner when:
· there is a row with all X's or all O's, or
· there is a col with all X's or all O's, or
· there is a left-to-right diagonal with all X's or all O's, or
· there is a right-to-left diagonal with all X's or all O's.
I express that with the following predicate.
pred winner [t: Time] {
 some m: Mark |
 some r: Row | all c: Col | board[r, c, t] = m
 or
 some c: Col| all r: Row | board[r, c, t] = m
 or
 board[first, first, t] = m and
 board[first.next, first.next, t] = m and
 board[first.next.next, first.next.next, t] = m
 or
 board[last,last, t] = m and
 board[last.prev, last.prev, t] = m and
 board[last.prev.prev,last.prev.prev, t] = m
}
Here is my complete tic-tac-toe model:
open util/ordering[Time]
open util/ordering[Row]
open util/ordering[Col]

/*
Structure:
1. The game is played on a 3x3 board.
2. There are two players, Player1 and Player2.
3. Players mark the game board with either X or O.
4. The game is played over a series of time steps.
*/

// 4. The game is played over a series of time steps.
sig Time {}

// 3. Players mark the game board with either X or O.
enum Mark { X, O }

// 2. There are two players, Player1 and Player2.
enum Player { Player1, Player2 }

// 1. The game is played on a ... board.
one sig gameBoard {
 cells: Row -> Col -> Mark -> Time
}

// 1. ... on a 3x3 board.
sig Row {}{ #Row = 3}
sig Col {}{ #Col = 3}

/*
Constraints:
1. Each cell has at most one mark (X or O) at each time.
2. A win stops further marking.
3. When all cells are marked, there can be no additional marking.
4. Players alternate moves.
5. There is no interrupt in the play: If cells are empty at time t-1,
 and there is no winner at time t-1, then there will be one
 fewer empty cells at time t. If there is a winner at time t-1,
 then there will be no change to the number of empty cells at
 time t (per invariant 2).
6. Player1 marks cells O and Player2 marks cells X.
7. When there is a winner or when all cells are marked,
 then the recording of "last player to move" is blank.
*/

// 1. Each cell has at most one mark (X or O) at each time.
pred Each_cell_has_at_most_one_mark {
 no r: Row, c: Col, t: Time, disj m, m': Mark |
 ((r -> c -> m) in gameBoard.cells.t) and
 ((r -> c -> m') in gameBoard.cells.t)
}

// 2. A win stops further marking.
pred gameBoard_remains_unchanged_after_win {
 all t: Time - first |
 winner[t.prev] => gameBoard.cells.t = gameBoard.cells.(t.prev)
}

// 3. When all cells are marked, there can be no additional marking.
pred gameBoard_remains_unchanged_after_every_cell_is_marked {
 all t: Time - first |
 every_cell_is_marked[t.prev] => gameBoard.cells.t = gameBoard.cells.(t.prev)
}

// 4. Players alternate moves.
pred Players_alternately_move {
 no t: Time - last, t': t.next |
 (some LastPlayerToMove.person.t) and
 (some LastPlayerToMove.person.t') and
 (LastPlayerToMove.person.t = LastPlayerToMove.person.t')
}

// 5. There is no interrupt in the play: If cells are empty at time t-1,
// and there is no winner at time t-1, then there will be one
// fewer empty cells at time t. If there is a winner at time t-1,
// then there will be no change to the number of empty cells at
// time t (per invariant 2).
pred Progressively_fewer_empty_cells {
 all t: Time - first |
 not every_cell_is_marked[t.prev] and not winner[t.prev] =>
 #empty_cells[t] < #empty_cells[t.prev]
}

// 6. Player1 marks cells O and Player2 marks cells X.
pred Players_mark_cells_appropriately {
 all t: Time - first |
 not every_cell_is_marked[t.prev] and not winner[t.prev] =>
 let c = gameBoard.cells.t - gameBoard.cells.(t.prev) |
 c[Row][Col] = X =>
 (LastPlayerToMove.person.t = Player2)
 else
 (LastPlayerToMove.person.t = Player1)
}

// 7. When there is a winner or when all cells are marked,
// then the recording of "last player to move" is blank.
pred LastPlayerToMove_remains_unchanged_after_win_or_all_cells_marked {
 all t: Time - first |
 ((every_cell_is_marked[t.prev]) or (winner[t.prev])) =>
 no LastPlayerToMove.person.t
}

// This provides one place that you can call to
// have all the constraints enforced.
pred game_is_constrained_by_these_constraints {
 Each_cell_has_at_most_one_mark
 gameBoard_remains_unchanged_after_win
 gameBoard_remains_unchanged_after_every_cell_is_marked
 Players_alternately_move
 Progressively_fewer_empty_cells
 Players_mark_cells_appropriately
 LastPlayerToMove_remains_unchanged_after_win_or_all_cells_marked
}

// Return the set of empty cells at time t.
// This is implemented using set subtraction.
// (Row -> Col) is the set of all possible combinations
// of row and col. Subtract from that the set
// of (row, col) pairs containing a mark at time t.
fun empty_cells[t: Time]: Row -> Col {
 (Row -> Col) - gameBoard.cells.t.Mark
}

// Once the game board is completely marked,
// there won't be a "last player." Ditto for when
// there is a winner. That's why there "may" be
// a last player at time t. That is, there isn’t
// necessarily a player involved at every time step,
// i.e., there isn’t necessarily a (Player, Time) pair
// for every value of Time.
one sig LastPlayerToMove {
 person: Player lone -> Time
}

// Return the mark (X or O) on board[r][c] at time t,
// or none if there is no mark.
fun board [r: Row, c: Col, t: Time]: lone Mark {
 gameBoard.cells[r][c].t
}

// There is a winner when (a) there is a row
// with all X's or all O's, or (b) there is a col
// with all X's or all O's, or (c) there is a left-to-right
// diagonal with all X's or all O's, or (d) there is a
// right-to-left diagonal with all X's or all O's.
pred winner [t: Time] {
 some m: Mark |
 some r: Row | all c: Col | board[r, c, t] = m
 or
 some c: Col| all r: Row | board[r, c, t] = m
 or
 board[first, first, t] = m and
 board[first.next, first.next, t] = m and
 board[first.next.next, first.next.next, t] = m
 or
 board[last,last, t] = m and
 board[last.prev, last.prev, t] = m and
 board[last.prev.prev,last.prev.prev, t] = m
}

// Every call of the game board is marked when
// the set of cells with marks equals all combinations
// of (row, col)
pred every_cell_is_marked[t: Time] {
 gameBoard.cells.t.Mark = (Row -> Col)
}

// Initially the game board has no cells.
// One of the players is first to play.
// The game is constrained by the invariants.
pred init [t: Time] {
 no gameBoard.cells.t
 one p: Player | LastPlayerToMove.person.t = p
 game_is_constrained_by_these_constraints
}

pred doNothing [t: Time] {
 gameBoard.cells.t = gameBoard.cells.(t.prev)
}

pred Play {
 init[first]
 all t: Time - first |
 X.marked_on_gameboard_at_time[t]
 or O.marked_on_gameboard_at_time[t]
 or doNothing[t]
}

pred marked_on_gameboard_at_time [m: Mark, t: Time] {
 some r: Row, c: Col {
 gameBoard.cells.t = gameBoard.cells.(t.prev) +
 {r': Row, c': Col, m': Mark | r' = r and c' = c and m' = m}
 }
}

[bookmark: _GoBack]run Play for 3 but 12 Time

