
12

Hide (Localize) Namespaces
Versus

Expose Namespaces

Table of Contents
Issue
Introduction
Example
Technical Requirements for Hiding (Localizing) Namespaces
Best Practice

Issue

When should a schema be designed to hide (localize) within the schema the namespaces of the
elements and attributes it is using, versus when should it be designed to expose the namespaces
in instance documents?

Introduction

A typical schema will reuse elements and types from multiple schemas, each with different
namespaces.

<xsd:schema …
 targetNamespace=“A”>

A.xsd

<xsd:schema …
 targetNamespace=“B”>

B.xsd

<xsd:schema …
 targetNamespace="C">
 <xsd:import namespace="A"
 schemaLocation="A.xsd"/>
 <xsd:import namespace="B"
 schemaLocation="B.xsd"/>
 …
</xsd:schema>

C.xsd

13

A schema, then, may be comprised of components from multiple namespaces. Thus, when a
schema is designed the schema designer must decide whether or not the origin (namespace) of
each element should be exposed in the instance documents.

The namespaces of the components are not
visible in the instance documents.

<myDoc …
 schemaLocation=“C C.xsd”>

</myDoc>

Instance Document

<myDoc …
 schemaLocation=“C C.xsd”>

</myDoc>

The namespaces of the components are visible
in the instance documents.

Instance Document

14

A binary switch attribute in the schema is used to control the hiding/exposure of namespaces: by
setting elementFormDefault=“unqualified” the namespaces will be hidden (localized) within the
schema, and by setting elementFormDefault=“qualified” the namespaces will be exposed in
instance documents.

elementFormDefault - the
Exposure “Switch”

hide

expose

elementFormDefault

<xsd:schema …
 elementFormDefault=“qualified”>

<xsd:schema …
 elementFormDefault=“unqualified”>vs

Schema

Example:

Camera.xsd

Nikon.xsd Olympus.xsd Pentax.xsd

Below is a schema for describing a camera. The camera schema reuses components from other
schemas - the camera’s <body> element reuses a type from the Nikon schema, the camera’s
<lens> element reuses a type from the Olympus schema, and the camera’s <manual_adaptor>
element reuses a type from the Pentax schema.

15

Camera.xsd

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.camera.org"
 xmlns:nikon="http://www.nikon.com"
 xmlns:olympus="http://www.olympus.com"
 xmlns:pentax="http://www.pentax.com"
 elementFormDefault="unqualified">
 <xsd:import namespace="http://www.nikon.com"
 schemaLocation="Nikon.xsd"/>
 <xsd:import namespace="http://www.olympus.com"
 schemaLocation="Olympus.xsd"/>
 <xsd:import namespace="http://www.pentax.com"
 schemaLocation="Pentax.xsd"/>
 <xsd:element name="camera">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="body" type="nikon:body_type"/>
 <xsd:element name="lens" type="olympus:lens_type"/>
 <xsd:element name="manual_adapter"
 type="pentax:manual_adapter_type"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

This schema is designed to hide namespaces

Note the three <import> elements for importing the Nikon, Olympus, and Pentax components.
Also note that the <schema> attribute, elementFormDefault has been set to the value of
unqualified. This is a critical attribute. Its value controls whether the namespaces of the elements
being used by the schema will be hidden or exposed in instance documents (thus, it behaves like
a switch turning namespace exposure on/off). Because it has been set to “unqualified” in this
schema, the namespaces will be remain hidden (localized) within the schema, and will not be
visible in instance documents, as we see here:

16

Camera.xml (namespaces hidden)

<?xml version="1.0"?>
<my:camera xmlns:my="http://www.camera.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.camera.org
 Camera.xsd">
 <body>
 <description>Ergonomically designed casing for easy handling</descriptio
 </body>
 <lens>
 <zoom>300mm</zoom>
 <f-stop>1.2</f-stop>
 </lens>
 <manual_adapter>
 <speed>1/10,000 sec to 100 sec</speed>
 </manual_adapter>
</my:camera>

Instance document with namespaces hidden
(localized) within the schema

<body>
 <description>Ergonomically designed casing for easy handling</description>
</body>
<lens>
 <zoom>300mm</zoom>
 <f-stop>1.2</f-stop>
</lens>
<manual_adapter>
 <speed>1/10,000 sec to 100 sec</speed>
</manual_adapter>

Instance document with namespaces hidden (localized) in the schema.
--> The fact that the <description> element comes from the Nikon schema,
the <zoom> and <f-stop> elements come from the Olympus schema, and the
<speed> element comes from the Pentax schema is totally transparent to the
instance document.

Instance Document

The only namespace qualifier exposed in the instance document is on the <camera> root
element. The rest of the document is completely free of namespace qualifiers. The Nikon,
Olympus, and Pentax namespaces are completely hidden (localized) within the schema!

Looking at the instance document one would never realize that the schema got its components
from three other schemas. Such complexities are localized to the schema. Thus, we say that the
schema has been designed in such a fashion that its component namespace complexities are
“hidden” from the instance document.

On the other hand, if the above schema had set elementFormDefault=“qualified” then the
namespace of each element would be exposed in instance documents. Here’s what the instance
document would look like:

17

Camera.xml (namespaces exposed)

<?xml version="1.0"?>
<c:camera xmlns:c="http://www.camera.org"
 xmlns:nikon="http://www.nikon.com"
 xmlns:olympus="http://www.olympus.com"
 xmlns:pentax="http://www.pentax.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.camera.org
 Camera.xsd>
 <c:body>
 <nikon:description>Ergonomically designed casing for easy
 handling</nikon:description>
 </c:body>
 <c:lens>
 <olympus:zoom>300mm</olympus:zoom>
 <olympus:f-stop>1.2</olympus:f-stop>
 </c:lens>
 <c:manual_adapter>
 <pentax:speed>1/10,000 sec to 100 sec</pentax:speed>
 </c:manual_adapter>
</c:camera>

Instance document with namespaces exposed

<nikon:description>Ergonomically designed casing for easy
 handling</nikon:description>

<olympus:zoom>300mm</olympus:zoom>
<olympus:f-stop>1.2</olympus:f-stop>

<pentax:speed>1/10,000 sec to 100 sec</pentax:speed>

Instance Document

Note that each element is explicitly namespace-qualified. Also, observe the declaration for each
namespace. Due to the way the schema has been designed, the complexities of where the schema
obtained its components have been “pushed out” to the instance document. Thus, the reader of
this instance document is “exposed” to the fact that the schema obtained the description element
from the Nikon schema, the zoom and f-stop elements from the Olympus schemas, and the speed
element from the Pentax schema.

All Schemas must have a Consistent Value for elementFormDefault!

Be sure to note that elementFormDefault applies just to the schema that it is in. It does not
apply to schemas that it includes or imports. Consequently, if you want to hide namespaces then
all schemas involved must have set elementFormDefault=“unqualified”. Likewise, if you want to
expose namespaces then all schemas involved must have set elementFormDefault=“qualified”.
To see what happens when you “mix” elementFormDefault values, let’s suppose that Camera.xsd
and Olympus.xsd have both set in their schema elementFormDefault=“unqualified”, whereas
Nikon.xsd and Pentax.xsd have both set elementFormDefault=“qualified”.

18

Nikon.xsd

elementFormDefault="qualified"

Olympus.xsd

elementFormDefault="unqualified"

Pentax.xsd

elementFormDefault="qualified"

Camera.xsd

elementFormDefault="unqualified"

Here’s what an instance document looks like with this “mixed” design:

Camera.xml (mixed design)

Hiding/exposure mix: This instance document has the Nikon and
Pentax namespaces exposed, while the Camera and Olympus
namespaces are hidden.

Instance Document
<?xml version="1.0"?>
<my:camera xmlns:my="http://www.camera.org"
 xmlns:nikon="http://www.nikon.com"
 xmlns:pentax="http://www.pentax.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.camera.org
 Camera.xsd>
 <body>
 <nikon:description>Ergonomically designed casing for easy
 handling</nikon:description>
 </body>
 <lens>
 <olympus:zoom>300mm</olympus:zoom>
 <olympus:f-stop>1.2</olympus:f-stop>
 </lens>
 <manual_adapter>
 <pentax:speed>1/10,000 sec to 100 sec</pentax:speed>
 </manual_adapter>
</my:camera>

<olympus:zoom>300mm</olympus:zoom>
 <olympus:f-stop>1.2</olympus:f-stop>

Instance document with namespaces hidden
(localized) within the schema

<body>
 <description>Ergonomically designed casing for easy
 handling</description>
</body>
<lens>
 <zoom>300mm</zoom>
 <f-stop>1.2</f-stop>
</lens>
<manual_adapter>
 <speed>1/10,000 sec to 100 sec</speed>
</manual_adapter>

<nikon:description>Ergonomically designed casing for easy
 handling</nikon:description>

<pentax:speed>1/10,000 sec to 100 sec</pentax:speed>

19

Observe that in this instance document some of the elements are namespace-qualified, while
others are not. Namely, those elements from the Camera and Olympus schemas are not qualified,
whereas the elements from the Nikon and Pentax schemas are qualified.

Technical Requirements for Hiding (Localizing) Namespaces

There are two requirements on an element for its namespace to be hidden from instance
documents:

[1] The value of elementFormDefault must be “unqualified”.
[2] The element must not be globally declared. For example:

<?xml version=“1.0”?>
<xsd:schema ...>
 <xsd:element name=“foo”>
 ...
</xsd:schema ...>

The element foo can never have its namespace hidden from instance documents, regardless of the
value of elementFormDefault. foo is a global element (i.e., an immediate child of <schema>) and
therefore must always be qualified. To enable namespace hiding the element must be a local
element.

Best Practice

For this issue there is no definitive Best Practice with respect to whether to design your schemas
to hide/localize namespaces, or design it to expose namespaces. Sometimes it’s best to hide the
namespaces. Othertimes it’s best to expose the namespaces. Both have their pluses and minus, as
is discussed below.

However, there are Best Practices with regards to other aspects of this issue. They are:

1. Whenever you create a schema, make two copies of it. The copies should be identical,
except that in one copy set elementFormDefault=“qualified”, whereas in the other copy set
elementFormDefault=“unqualified”. If you make two versions of all your schemas then
people who use your schemas will be able to implement either design approach - hide
(localize) namespaces, or expose namespaces.

2. Minimize the use of global elements and attributes so that elementFormDefault can behave
as an “exposure switch”. The rationale for this was described above, in Technical
Requirements for Hiding (Localizing) Namespaces

Advantages of Hiding (Localizing) Component Namespaces within the Schema

The instance document is simple. It’s easy to read and understand. There are no namespace
qualifiers cluttering up the document, except for the one on the document element (which is okay
because it shows the domain of the document). The knowledge of where the schema got its
components is irrelevant and localized to the schema.

20

Design your schema to hide (localize) namespaces within the schema ...

– when simplicity, readability, and understandability of instance documents is of utmost
importance when namespaces in the instance document provide no necessary additional
information. In many scenarios the users of the instance documents are not XML-experts.
Namespaces would distract and confuse such users, where they are just concerned about
structure and content.

– when you need the flexibility of being able to change the schema without impact to instance
documents. To see this, imagine that when a schema is originally designed it imports elements/
types from another namespace. Since the schema has been designed to hide (localize) the
namespaces, instance documents do not see the namespaces of the imported elements. Then,
imagine that at a later date the schema is changed such that instead of importing the elements/
types, those elements and types are declared/defined right within the schema (inline). This
change from using elements/types from another namespace to using elements/types in the local
namespace has no impact to instance documents because the schema has been designed to
shield instance documents from where the components come from.

Advantages of Exposing Namespaces in Instance Documents

If your company spends the time and money to create a reusable schema component, and makes
it available to the marketplace, then you will most likely want recognition for that component.
Namespaces provide a means to achieve recognition. For example,

<nikon:description>
 Ergonomically designed casing for easy handling</
nikon:description>

There can be no misunderstanding that this component comes from Nikon. The namespace
qualifier is providing information on the origin/lineage of the description element.

Another case where it is desirable to expose namespaces is when processing instance documents.
Oftentimes when processing instance documents the namespace is required to determine how an
element is to be processed (e.g., “if the element comes from this namespace then we’ll process it
in this fashion, if it comes from this other namespace then we’ll process it in a different
fashion”). If the namespaces are hidden then your application is forced to do a lookup in the
schema for every element. This will be unacceptably slow.

Design your schema to expose namespaces in instance documents ...

– when lineage/ownership of the elements are important to the instance document users (such as
for copyright purposes).

– when there are multiple elements with the same name but different semantics then you may
want to namespace-qualify them so that they can be differentiated (e.g, publisher:body versus
human:body). [In some cases you have multiple elements with the same name and different
semantics but the context of the element is sufficient to determine its semantics. Example: the
title element in <person><title> is easily distinguished from the title element in
<chapter><title>. In such cases there is less justification for designing your schema to expose
the namespaces.]

21

– when processing (by an application) of the instance document elements is dependent upon
knowledge of the namespaces of the elements.

Note about elementFormDefault and xpath Expressions

We have seen how to design your schema so that elementFormDefault acts as an “exposure
switch”. Simply change the value of elementFormDefault and it dictates whether or not elements
are qualified in instance documents. In general, no other changes are needed in the schema other
than changing the value of elementFormDefault. However, if your schema is using <key> or
<unique> then you will need to make modifications to the xpath expressions when you change
the value of elementFormDefault.

If elementFormDefault=“qualified” then you must qualify all the references in the xpath
expression.

Example:

<xsd:key name=“PK”>

 <xsd:selector xpath=“c:Camera/c:lens”>

 <xsd:field xpath=“c:zoom”>

</xsd:key>

Note that each element in the xpath expression is namespace-qualified.

If elementFormDefault=“unqualified” then you must NOT qualify the references in the xpath
expression.

Example:

<xsd:key name=“PK”>

 <xsd:selector xpath=“Camera/lens”>

 <xsd:field xpath=“zoom”>

</xsd:key>

Note that none of the elements in the xpath expressions are namespace-qualified.

So, as you switch between exposing and hiding namespaces you will need to take the xpath
changes into account.

